
Quasiparticle Energies and Band Gaps in Graphene Nanoribbons

Li Yang,1,2 Cheol-Hwan Park,1,2 Young-Woo Son,3 Marvin L. Cohen,1,2 and Steven G. Louie1,2

1Department of Physics, University of California at Berkeley, California 94720, USA
2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

3Department of Physics, Konkuk University, Seoul 143-701, Korea
(Received 8 June 2007; published 1 November 2007)

We present calculations of the quasiparticle energies and band gaps of graphene nanoribbons (GNRs)
carried out using a first-principles many-electron Green’s function approach within the GW approxima-
tion. Because of the quasi-one-dimensional nature of a GNR, electron-electron interaction effects due to
the enhanced screened Coulomb interaction and confinement geometry greatly influence the quasiparticle
band gap. Compared with previous tight-binding and density functional theory studies, our calculated
quasiparticle band gaps show significant self-energy corrections for both armchair and zigzag GNRs, in
the range of 0.5–3.0 eV for ribbons of width 2.4–0.4 nm. The quasiparticle band gaps found here suggest
that use of GNRs for electronic device components in ambient conditions may be viable.
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Graphene, a single atomic layer of graphite, has been
successfully produced in experiment [1–3], which has
resulted in intensive investigations on graphene-based
structures because of fundamental physics interests and
promising applications [4–10]. When graphene is etched
or patterned along one specific direction, a novel quasi-
one-dimensional structure, a strip of graphene of nano-
meters in width, can be obtained, which is referred to as
a graphene nanoribbon (GNR). The GNRs are predicted to
exhibit various remarkable properties and may be a poten-
tial elementary structure for future carbon-based nanoelec-
tronics [11–14]. In particular, as a fundamental factor in
determining transport and optical properties, the electronic
band structure of GNRs has been the subject of great
interest.

Depending on specific GNRs, previous studies using
tight-binding or massless Dirac fermion equation ap-
proaches have predicted GNRs to be either metals or semi-
conductors [15–20], whereas density functional theory
(DFT) calculation showed that all zigzag-edged and
armchair-edged GNRs have a finite band gap when relaxa-
tion of the structure or spin polarization is considered
[13,21]. Recent experiments have reported finite band
gaps in all the GNRs that have been tested [22,23].
However, it is well established [24] that the Kohn-Sham
eigenvalues from DFT calculation are inappropriate to
describe the band gaps of semiconductors. The disagree-
ment between the Kohn-Sham band gap and experimental
data is worse for nanostructures because of the enhanced
electron-electron interaction in those systems. On the other
hand, first-principles calculation based on many-body per-
turbation theory, such as the GW approximation [24,25],
has been shown to be reliable for obtaining quasiparticle
band gaps of nanosized semiconductors [26–29].
Motivated by the importance but the lack of accurate
knowledge about quasiparticle band gaps of the GNRs
and by the successes of the GW approximation for nano-

size semiconductors, we carry out a first-principles calcu-
lation using the GW approximation to determine the
quasiparticle energy spectrum and the band gaps of the
GNRs.

We consider two common types of GNRs. Their struc-
tures are shown in Fig. 1. The left one, called armchair
GNR (AGNR), has armchair-shaped edges; the right one,
called zigzag GNR (ZGNR), has zigzag-shaped edges. The
dangling � bonds at the edges are passivated by hydrogen
atoms. The structures of the GNRs studied here are fully
relaxed according to the forces and stress on the atoms
using local (spin) density approximation [L(S)DA].
Following conventional notation, a GNR is specified by
the number of dimer lines or zigzag chains along the ribbon
forming the width, for the AGNR and ZGNR, respectively,
as explained in Fig. 1. For example, the structure of
Fig. 1(a) is referred as a 11-AGNR and the structure in
Fig. 1(b) as a 6-ZGNR. In addition, when referring to the
width of a GNR here, we define the width without includ-
ing the hydrogen atoms at the edge, as shown in Fig. 1.

a

z

y

w

b

w

FIG. 1 (color online). (a) A ball-stick model for an 11-AGNR
which has 11 C-C dimer lines making up its width w. Hydrogen
atoms (white balls) are used to passivate the edge �-dangling
bonds. x, y, and z are the Cartesian coordinates, and the x axis is
out of plane. (b) A ball-stick model for a 6-ZGNR which has 6
zigzag chains along the z direction.
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Following the approach of Hybertsen and Louie [25], we
first obtain the electronic ground state with DFT within the
L(S)DA. Norm-conserving pseudopotentials [30] and the
plane-wave basis are used with a 60 Ry energy cutoff.
Then, the quasiparticle energies are calculated within the
G0W0 approximation to the electron self-energy. The static
dielectric matrix is calculated with an 8.0 Ry energy cutoff
with the plane-wave basis and extended to finite frequen-
cies with the generalized plasmon-pole model. To assure
that the quasiparticle energies are converged to within
0.1 eV, a 1� 1� 32 k-point sampling is used for
AGNRs and a 1� 1� 64 k-point sampling for ZGNRs.
Since the supercell method is used in this calculation to
mimic isolated GNRs, we use a truncated Coulomb inter-
action to eliminate the image effect between adjacent
supercells [31–33]. Considering the geometry of the rib-
bons, we employ a rectangular-shape Coulomb truncation
as

 Vc �
1

r
��jxj � xc���jyj � yc���jzj � zc�; (1)

where r �
���������������������������
x2 � y2 � z2

p
is the distance between two

electrons; xc, yc, and zc are cutoff parameters. As discussed
in previous studies [31], the dimension of the unit cell has
to be 2xc � 2yc � 2zc. Because of the single layer struc-
ture of GNRs, the truncation lengths xc and zc are fixed for
all GNRs in our calculations. The unit cell volume is
linearly dependent on the width of a GNR, and the number
of plane waves needed is also scaled linearly with the width
of ribbon, which significantly reduces the cost of the
computation. The spin degree of freedom is included in
the GW calculations of ZGNRs, and the details can be
found in Ref. [34].

The LDA and quasiparticle band gaps of 11 armchair
GNRs are shown in Fig. 2. As is found in the LDA, the
quasiparticle band structure has a direct band gap at the
zone center for all AGNRs studied. In addition, the band
gaps of the three families of n-AGNRs, which are classi-
fied according to whether n � 3p� 1, 3p� 2, or 3p (n is
the number of dimer chains as explained in Fig. 1, and p is
an integer), show qualitatively the same hierarchy as those
obtained in LDA (E3p�1

g > E3p
g > E3p�2

g � 0).
However, the GW self-energy corrections to the band

gap, Eg, are significant for all the AGNRs. The corrections
are from 0.5 to 3 eV for the AGNRs in Fig. 2 with width
from 1.6 to 0.4 nm, which are much larger than those found
for bulk graphite or diamond [25]. A weaker screening
contributes to this enhanced self-energy correction because
the GNRs are isolated and surrounded by vacuum that does
not screen the Coulomb interaction. In addition, the con-
fined geometry (one-dimensional nature) of the GNRs
enhances the effect of electron-electron interaction, which
further enlarges the self-energy correction. This kind of
enhanced self-energy correction is also found in other
nanostructures such as nanotubes and nanowires [26–29].

The band gaps from both the LDA and GW calculations
clearly show size dependence in Fig. 2 because of quantum
confinement. Under a hard-wall boundary condition used
in previous works, an inverse relation, Eg / 1=�w� w0�, is
widely applied to characterize the size dependence of the
band gap in AGNRs, where w is the width defined in Fig. 2
and w0 is a small constant (2.4 Å). This size dependence of
the band gaps describes the tight-binding and LDA results
well [21]. However, the boundary condition for the GNRs
is not strictly a hard-wall condition, and the electron dis-
tribution will leak out of the boundary more or less.
Therefore, the effective width of GNRs should be larger
than the physical width w. Considering this effect, we use
the formula

 Eg �
a

w� w0 � �
; (2)

to fit the band gap values in Fig. 2, and the fitted results are
given in Table I. For LDA results, the parameter � is close
to zero or a little bit negative. For GW results, the parame-
ter � found is around 1.5 to 2.9 Å.

Figures 3(a) and 3(b) show the LSDA and quasiparticle
band structure of 12-ZGNR. As predicted by previous
works [21,35], the LSDA result of ZGNRs shows an anti-

FIG. 2 (color online). Variation of band gaps with the width of
AGNRs. The three families of AGNRs are represented by differ-
ent symbols. The values of the same family of AGNRs are
connected by solid lines as guides to the eyes. The open symbols
are LDA band gaps while the solid symbols are the correspond-
ing quasiparticle band gaps. Dashed arrows are used to indicate
the self-energy correction for the smallest width ribbon of each
of the three families of AGNRs studied.

TABLE I. Fitted parameters for the LDA andGW band gaps of
AGNRs according to formula (2).

LDA GW
Family a(eV Å) �� �A� a(eV Å) �� �A�

3p� 1 15.8 0.1 44.4 1.8
3p� 2 3.0 �0:4 14.6 1.3
3p 7.6 �1:7 31.3 2.9
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ferromagnetic insulating ground state with ferromagnetic
coupling at each zigzag edge and antiferromagnetic cou-
pling across the ribbon. There are two notable character-
istics in the electronic structure of ZGNRs: (1) the top of
the valence band and the bottom of the conduction band are
composed of mainly edge states; and (2) the spin interac-
tion introduces a finite band gap in the ZGNRs. As shown
in Figs. 3(c) and 3(d), the magnitudes of the self-energy
corrections to the LSDA energy gaps in ZGNRs are similar
to those in AGNRs, and the corrections enlarge the band
gap by 0.8 to 1.5 eV for the ribbons studied. The spin
polarization changes the screening type of ZGNRs from
that of a metal to that of a semiconductor. Therefore, a
significant self-energy correction results. We try to fit the
width dependence of the quasiparticle band gaps in
Fig. 3(c) with a functional form of 1=�w� ��. The fitted
� of LSDA is almost zero, and it is 16 Å for theGW values,
which is much larger than that in AGNRs. This is not
unexpected, because it is the spin interaction between
electrons close to the edge that induces the finite band
gap in ZGNRs. Therefore, we do not expect a simple
quantum-confinement effect, a 1=w size dependence of
the band gap, in such narrow ZGNRs.

Unlike the band gap (�0) located around three-fourths of
the way to the Brillouin zone edge [Figs. 3(a) and 3(b)], the
energy gap at the zone boundary (�1) is not sensitive to the
width of ZGNRs as seen in Fig. 3(d). Previous tight-
binding calculations [35] show that the profile of edge

states decays to the center of ZGNRs with the factor of
e�ar, where a � ��2=

���
3
p
c� lnj2 coskc2 j ( 2�

3 � kc � �, c is
the lattice constant of ZGNRs along the z direction). As a
result, the band edge states close to the zone boundary are
highly confined at the edge of ZGNRs. Because of their
dominant edge-state character, these states are not sensitive
to the width of the ribbons; hence, the gap �1 is virtually
independent of width.

Since the electronic wave function of the edge states is
more and more confined to an edge of a ZGNR when its
wave vector k approaches the zone boundary, it provides a
possibility to see how the self-energy correction evolves
with the localization of the electronic state. We plot the
charge distributions of three electronic states of the first
conduction band with different wave vector k and their
corresponding self-energy correction values defined as
EQP-ELSDA in Fig. 4. It is clear that the self-energy correc-
tion is enhanced when the state is confined at the edge as
shown from Figs. 4(b) and 4(d). Because of the 1=r nature
of the Coulomb interaction, the self-energy of a state is
sensitive to the localization of the wave function.
Therefore, a larger self-energy correction is found to the
more localized edge state. As a consequence, the depen-
dence of the GW correction on the wave vector signifi-
cantly changes the band dispersion in ZGNRs from that of
LSDA calculations, which can be seen from Figs. 3(a) and
3(b). A smaller effective mass and better mobility for the
carriers are expected in ZGNRs for the GW bands as
compared to the LSDA ones. For example, the effective
mass of holes (electrons) in the 12-ZGNR within LSDA is
around 0:14m0 (0:41m0), and the GW calculation de-
creases the value to around 0:07m0 (0:21m0) (m0 is the
rest mass of the free electron).
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FIG. 4 (color online). (a) Variation of GW correction (the
difference between the quasiparticle gap and the LSDA gap)
with wave vector of electronic states (k � 0:375, 0.4375, and
0.50 in units of 2�=c) in an 8-ZGNR. (b), (c), and (d) are the
charge distributions of the conduction state with the correspond-
ing wave vectors in (a). We plot the charge distribution of only
one spin component because of the degeneracy of the up and
down spin components.

FIG. 3 (color online). Calculated band structure and energy
gap of ZGNRs. (a) The LSDA band structure of a 12-ZGNR. The
up and down spin states are degenerated for all the bands, and the
top of the valence band is set at zero. The symbols, �0 and �1

denote the direct band gap and the energy gap at the zone
boundary. (b) The quasiparticle band structure of a 12-ZGNR.
(c) Variation of direct band gap with the width of ZGNRs. The
open symbols denote the LSDA results while the solid symbols
are the GW results. (d) Variation of the energy gap at the zone
boundary with the width of ZGNRs. The symbols have the same
meaning as those in (c).
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Recently, several experiments related to the quasipar-
ticle band gap in GNRs have been reported [22,23]. They
have not only proven the existence of finite band gap in
GNRs but also shown a larger gap when the width of the
GNR decreases. Within a range of width of GNRs of 15 to
90 nm, a Eg / 1=w relation is observed. This finding
agrees qualitatively with our GW results. However, the
experimental data are for the wider GNRs where the widths
are far from the range of widths of our calculated GNRs
(0.4–2.4 nm). In addition, all the GNRs in the experimental
case are etched by the oxygen plasma, which could be
different from our hydrogen-passivated GNRs. Therefore,
it is difficult to compare our GW results with current
experimental data directly. On the other hand, considering
that the origin of the enhancement of the self-energy
correction in GNRs is the quasi-one-dimensional geometry
and weakened screening, we expect that other passivating
atoms or molecules do not change the physics here sig-
nificantly. With advances in experimental techniques, it is
very possible that smaller-sized and hydrogen-passivated
GNRs will soon be fabricated. A comparison between our
first-principles results and experimental data can then be
made.

In conclusion, we have performed a first-principles
Green’s function calculation within theGW approximation
to obtain the quasiparticle band gaps in GNRs. Because of
the enhanced electron-electron interaction in these quasi-
one-dimensional systems, a significant self-energy correc-
tion is found for both armchair and zigzag GNRs. The
quasiparticle energy of states near the band gap in
ZGNRs is found to be wave vector sensitive, and this gives
rise to a larger band width and smaller effective mass for
carriers in ZGNRs. The calculated quasiparticle band gaps
are within the most interesting range (1–3 eV for 2–1 nm
GNRs) and give promise for applications of GNRs in
nanoelectronics.
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